Thermal probing in single microparticle and microfiber induced near-field laser focusing.
نویسندگان
چکیده
Microparticle and microfiber induced near-field laser heating has been widely used in surface nanostructuring. Information about the temperature and stress fields in the nanoscale near-field heating region is imperative for process control and optimization. Probing of this nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (~100 nm or less) and not immediately accessible for sensing. In this work, thermal probing of a single microparticle and microfiber induced near-field focusing on a substrate with laser light is conducted experimentally and interpreted by high-fidelity simulations. The laser (λ = 532 nm) serves as both heating and Raman probing sources. It is very interesting to note that variation of the Raman intensity, wavenumber, and linewidth all can be used to precisely capture the size of the micro-size subject on the substrate. Nanoscale mapping of conjugated optical, thermal, and stress effects, and the de-conjugation of these effects are performed. The effect of the laser fluence on the temperature and stress in the nanoscale heating region is investigated. With laser fluence of 3.9 ×10(9) W/m(2) and for a 1.21 μm silica particle induced laser heating, the maximum temperature rise and local stress are 58.5 K and 160 MPa, respectively. For a 6.24 μm glass fiber, they are 33.0 K and 120 MPa, respectively. Experimental results are explained and consistent with three-dimensional high-fidelity optical, thermal and stress field simulation.
منابع مشابه
Raman-based imaging and thermal characterization in near-field laser heating
Micro/nanoparticle induced nearfield laser ultrafocusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Probing of the temperature, stress, and optical fields induced by the nanoscale nearfield laser heating remains a great challenge since the heating area is very small (~100 nm or less) and not imme...
متن کاملNanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and ...
متن کاملIn situ TEM near-field optical probing of nanoscale silicon crystallization.
Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-fiel...
متن کاملLaser etching of groove structures with micro-optical fiber-enhanced irradiation
A microfiber is used as a laser-focusing unit to fabricate a groove structure on TiAlSiN surfaces. After one laser pulse etching, a groove with the minimum width of 265 nm is manufactured at the area. This technique of microfabricating the groove in microscale is studied. Based on the near-field intensity enhancement at the contact area between the fiber and the surface during the laser irradia...
متن کاملExperimental Study of the Laser Induced Flow and Thermophoresis of Suspending Microparticles
The induced flow effect is the rotary motion generated in the fluid flow due to the temperature gradient. The phenomenon of thermophoresis is the movement of particles from the warmer side of the fluid to the cooler side. Laser is a very suitable device for creating a temperature gradient due to its unique features such as high power density, harmonic waves, single wavelength and very low diver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2013